Search results for "uniform fatness"

showing 2 items of 2 documents

Self-improvement of pointwise Hardy inequality

2019

We prove the self-improvement of a pointwise p p -Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves.

Pure mathematicsInequalityGeneral Mathematicsmedia_common.quotation_subjectCharacterization (mathematics)Mathematics - Analysis of PDEsuniform fatnessClassical Analysis and ODEs (math.CA)FOS: Mathematicsepäyhtälötpointwise Hardy inequalitymedia_commonMathematicsPointwiseosittaisdifferentiaaliyhtälötSelf improvementApplied Mathematicsmetric spacemetriset avaruudetMetric spaceMathematics - Classical Analysis and ODEsself-improvementMaximal functionpotentiaaliteoria31C15 (Primary) 31E05 35A23 (Secondary)Analysis of PDEs (math.AP)
researchProduct

Weighted Hardy inequalities beyond Lipschitz domains

2014

It is a well-known fact that in a Lipschitz domain \Omega\subset R^n a p-Hardy inequality, with weight d(x,\partial\Omega)^\beta, holds for all u\in C_0^\infty(\Omega) whenever \beta<p-1. We show that actually the same is true under the sole assumption that the boundary of the domain satisfies a uniform density condition with the exponent \lambda=n-1. Corresponding results also hold for smaller exponents, and, in fact, our methods work in general metric spaces satisfying standard structural assumptions.

Pure mathematicsMathematics::Functional AnalysisHausdorff-sisältöApplied MathematicsGeneral Mathematicsmetric spaceBoundary (topology)LambdaLipschitz continuityOmega46E35 26D15Domain (mathematical analysis)Functional Analysis (math.FA)Mathematics - Functional AnalysisMetric spacemetrinen avaruusHardyn epäyhtälöuniform fatnessLipschitz domainHardy inequalityHausdorff contenttasainen paksuusExponentFOS: MathematicsMathematics
researchProduct